# HOW TO PREPARE AND MAINTAIN RE-5 & RE-5C M. C. MILLER COPPER SULFATE REFERENCE ELECTRODES

**WARNING!** M. C. Miller reference electrodes can use Copper Sulfate Antifreeze Solution. Copper Sulfate should be handled with care. Rubber gloves, safety glasses or face shields, waterproof aprons and inhalant protection are highly recommended when working with copper sulfate solutions. Please read the Materials Safety Data Sheet (MSDS) for Antifreeze Solution SDS ID# 50 for proper handling information.

## **Electrode Preparation Steps:**

When rejuvenating or setting up a new electrode, follow these steps:

- Unscrew the orange Lexan tube (with the ceramic plug attached) from the copper rod assembly, which will
  reveal the copper rod.
- 2. Burnish the copper rod to a shiny metallic finish using a new, unused, non-metallic scouring pad or sandpaper. Green 3M scouring pads are recommended for this procedure. When green scouring pads are unavailable, sandpaper can be used. Oxide type sandpaper must be avoided as oxide sandpaper will introduce unwanted metals into the surface of the copper rod.
  - Once the copper rod has been fully burnished, avoid any contamination that may occur before the rod assembly is reattached to the tube. The MCM copper rod assemblies are made with the highest purity copper available; however, they can become contaminated by ungloved fingers, dirt, oil or any other foreign substance.
- 3. Inspect the rubber o-ring and replace the ring if it appears to be damaged. Copper Sulfate is a corrosive mineral and should be handled with care. Leaking reference electrodes may result if the o-ring is damaged.
- 4. Screw the orange Lexan tube back onto the rod assembly, being careful not to over-torque.
- 5. Turn the electrode upside down and unscrew the plug assembly.
- 6. Add Antifreeze Solution to the orange Lexan tube. Fill to approximately the bottom of internal threads. (It is not recommended to add copper sulfate crystals to the Antifreeze solution.)
- 7. Re-install the ceramic plug assembly, being careful not to over-torque.
- 8. Allow the electrode to set for a 24-hour period before use. The electrode ceramic plug assemblies are presoaked at the factory in a copper sulfate solution and allowed to dry. Before using the electrode, the ceramic plug assembly must become moistened by the solution contained within the electrode. Failure to allow the ceramic plug assembly to moisten for at least 24 hours could cause the electrode to indicate false readings.

**Note 1:** Under average conditions, the electrode should be emptied and cleaned out every two or three months. However, if the electrode is allowed to remain in prolonged contact with low resistivity soil or water, more frequent rejuvenation may be desirable.

**Note 2:** Always use the orange plastic plug cover when an electrode is not being used to help prevent the plug from drying out due to evaporation.

#### **Electrode Maintenance**

#### **Short Term Maintenance:**

The ceramic plug should be cleaned after each use by rinsing the plug under water to remove any residual soil material, and wiping the plug with a clean cloth. After the cleaning process, the orange plastic plug cover should be applied to the plug to limit evaporation (to prevent the plug from drying out).

RE 07/27/2017 - 1 -

# **MAN275**

# **Long Term Maintenance**

If the electrode is not to be in-service for a significant period of time (say, at least a month), it is recommended that the antifreeze solution be emptied out of the Lexan tube and the inside of the tube be rinsed out using distilled or deionized water to remove any residue. *Please consult your local hazardous waste disposal authority for recommended disposal procedures for copper sulfate solutions.* 

When it is time to re-use the electrode, follow the preparations for use steps outline above, beginning with the copper rod burnishing step, since the copper rod will have accumulated an oxide film.

# **Testing Electrodes for Accuracy:**

After prolonged use, the copper sulfate solution can become contaminated by outside elements (reverse osmosis) leading the faulty readings. To check the condition of an in-service electrode, the following procedure is recommended. A new electrode should be prepared as a "standard". An LC-4 voltmeter is recommended for the test procedure with the DC voltage range set to 200mV and the input impedance set to  $200\text{M}\Omega$ . Attach the "standard" reference electrode to the negative (or common) side of the meter and the electrode to be tested to the positive side. Place the plug ends of the two electrodes (the "standard" and the in-service electrode) in a plastic bath containing tap water (not de-ionized or distilled water). If the electrodes are evenly matched, the voltmeter should read zero  $\pm 10\text{mV}$ . Since copper sulfate electrodes are affected by temperature, it is necessary to allow both electrodes to equilibrate at the same temperature prior to the test. 72 degrees F is ideal. When it is found that an in-service electrode has a reading that is outside the acceptable tolerance range, the electrode should be rejuvenated using the procedures outlined above.

#### **Common Sources of Reading Error:**

### **Voltmeter Parameters:**

The voltmeter used in conjunction with a reference electrode should have a sufficiently-high input impedance setting, at least  $10~M\Omega$ , although  $200M\Omega$  is recommended in high soil resistance conditions, so that source resistance does not affect readings. If the source resistance (the total resistance "seen" by the voltmeter) is significant with respect to the input impedance of the voltmeter, the voltage reading will be lower than it should be. Consequently, the higher the input impedance value of the voltmeter, the better, with respect to voltage reading accuracy.

# Poor (Electrical) Contact:

When taking readings with a reference electrode, the ceramic plug must be in good electrical contact with the soil. Vegetation, such as grass should be moved out of the way. Grass or other items will add resistance and result in inaccurate readings. M. C. Miller reference electrodes are designed to be durable, but over time, the ceramic plug assembly will become contaminated by foreign materials and become worn or cracked. At this point, the replacement of the ceramic plug assembly is highly recommended. If the copper sulfate solution within the electrode becomes cloudy white, reverse osmosis has occurred and rejuvenation is recommended.

<u>Submerging Electrodes</u>: When using a reference electrode completely submerged in water, the electrode tube should be kept completely filled with Antifreeze Solution. This will limit the possibility of outside water being forced into the electrode through the ceramic plug assembly. Even when the tube is completely filled, some reverse osmosis will occur. Submerging the electrode in areas where the water is highly contaminated, such as that found in manholes, lift stations or in seawater, the antifreeze solution should be changed more frequently. The solution should be changed every other day under such conditions. You will be able to tell how contaminated your electrode has become by testing its potential against a "standard" electrode.

Note: When using gel or antifreeze solution with an RE series portable electrode, there will be a 12mV shift in the potential. This should be noted when interpreting the resulting readings.



Instruments and Equipment for the Corrosion Engineer

11640 U.S. Highway 1, Sebastian, FL 32958 Tel: 772-794-9448 ~ Fax: 772-589-9072 sales@mcmiller.com ~ www.mcmiller.com

RE 07/27/2017 - 2 -